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Effective boundary conditions or wall laws are proposed for a laminar flow over a
rough wall with periodic roughness elements. These effective conditions are posed
on a regularized boundary which allows the details of the wall to be avoided and
dramatically reduces the computational cost. The effective conditions stem from
an asymptotic expansion of the solution, which is presented here. Both first- and
second-order conditions are discussed and tested numerically on bidimensional
CaSesS. (© 1998 Academic Press

1. INTRODUCTION

Rough boundaries are a challenge to numerical simulations because they are diffic
discretize and they require many mesh nodes near them even with unstructured mes

Yet there are many practical problems which have rough boundaries; electromag
scattering by an obstacle coated with an absorbing inhomogeneous paint and flow
rough surfaces are two such instances. Space shuttles covered with tiles for heat cont
in this class because the tiles cannot be joined together exactly to account for dilatatio
so the shuttle wall has an array of periodic gaps between the tiles.

This problem was studied mathematically for the Maxwell equations in [1, 4]. For fl
problems, Carreast al. have proposed a method in [6, 7] (analyzed later in [2, 3]) whi
is strikingly simple.

Consider for simplicity an incompressible viscous fluid. Assume that at some dist:
above the rough wall® (wheres stands for the characteristic dimensions of the roughne
elements) the flow is smooth. Then, for computational purposes, choose in that sn
region an artificial smooth boundary abovel?, parallel to the rough wall. If we knew the
velocity v of the flow onI'” then the region below” could be forgotten in the computatior
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and the problem would not have this small seadgymore. In addition, sincgis known on
' a computation of the flow beloW” could also be done and the normal stress compone
o -n could be computed; obviously

o-n=F®). 1)

But since the domain betwedl andI'” is thin, it is reasonable to think th&t is a local
function ofv (i.e.,o - n(x) = F(v(x))). SoF could be tabulated beforehand as a functior
of the roughness geometry and Eq. (1) would be used as affestiveboundary condition
onrl".

Such effective conditions are known in the engineering community [15] and most oft
they are established in an empirical manner [11, 8].

At this point, two questions arise

1. Can the functior be constructed analytically, instead of being found empirically?
2. How precise is such an approach?

In this paper, we wish to answer these questions for laminar flows over periodic rot
walls.

First let us note that this change of boundary conditions can be done even for smc
boundaries by a simple Taylor expansion. IndeedX) is the distance fronv” to the wall
in the normal directiom, then

0
U(X + n(X)N(X)) = U(x) + n(x)%(x) o) Vxel ®)

So the no-slip condition on the actual wall can be replaced by the conditidyi,on
au
u(x) + n(x)%(x) =0 VvVxel", 3)

and obviously the method is of order oneyin

Of course this argument does not work wHeéhis rough. However, we will show that
the result is still valid when the wall is periodic, provided that in {3js replaced by
another scalag, computed by solving a local Stokes problem in a cell containing one
the roughness elements Bf. This means in practice th&t is seen by the far field flow
like a smooth wall at an effective distancecof

In turbulence [14] a similar idea is used with wall laws. The velocity at a distgficanm
the wall is approximately

ucy) = u* [xllog<yvu*> + ﬁ], whereu* = /vayUly—o (4)

and wherey =0.41 is the Von Karman constant arlis a numerical constant which
depends on the roughness of the wall. In view of the Taylor expansiofl (8jhe effective
height of the wall due to its roughness.

In electromagnetics such boundary conditions were introduced long ago by Leontov
and, because the Maxwell equations are linear, the analysis can be carried out by a mu
scales expansion asin [1, 4]. Similar ideas can also be found in Keller [13]. The resultis
conditions like (1) are first order inbut that they can be generalized to more complex one
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that are accurate to any order. The domain decomposition argument of (1) was ana
in [2]. Comprehensive surveys of multiple scale expansions can be found in Bensou
et al. [5] and Sanchez-Palencia [17].

To extend the analysis to the Navier—Stokes equation one is faced with the prol
of boundary layers. Will roughness be well within the boundary layer?; will it indu
transition to turbulence or separation? We feel that for laminar flow the answer to tt
questions depends on the size of the Reynolds number Re, compared to the charact
length of the roughness First, we observe that for laminar flows the roughness eleme
are contained in the Prandtl boundary layer if

&
~ < Re'2,
LS

If this is not the case, the boundary layer will be small, compared with the roughness,
the flow is likely to separate, at least locally. Thus, the full Navier—Stokes equations r
to be considered, and the geometry cannot be simplified.

Now if the roughness elements lie within the boundary layer, the local Reynolds nun
in the roughness elements is

ve L 0ve? e

v an v L2 '
Therefore, it /L « Re"4, then the viscous effects dominate in the roughness elements
the flow near the rough wall will tend to be Stokes-like, with corrections due to convecti
If, on the contrary, Re¥2 > ¢/L > Re ¥4, then the convection effects dominate. In thi
analysis, we consider periodic roughness and the special regfgd. = O(1) which
belongs to the first case above, and we will include in the asymptotic expansion bott
diffusive and the convective effects. The numerical experiments confirm thatitis meanin
for applications.

To readers who are not familiar with homogenization (multiple scale asymptotics), ¢
sidering periodic roughness may seem restricted, but this is sort of usual in this fi
Composite materials are not always periodic and yet the analysis of the periodic case
alotofinformation [5, 17]. Also, all the asymptotic regimes should be studied and, in par
ular, the cases/L > Re ¥/*; but they seem to pose some mathematical and computatio
problems that we hope to solve in the future.

It would not be hard to extend the results to the Reynolds-averaged Navier—Stokes ¢
tion closed by &-epsilon model, for instance, but the problem is: what is a good turbuler
model near a rough wall? One major application would be for the modeling of turbul
flow over water waves. Perhaps the next step in this line would be rather to consider t
dependent flows. Then again, similar effective conditions would hold if the time variatic
are large, compared with the time scale derived from the roughness, which is often the
Otherwise the problem seems more difficult. A time periodic flow can be analyzed, butt
too, is not turbulence.

This paper, therefore, is not the complete story for flows over rough walls; it can har
laminar flow at high Reynolds numbeé® (1)) but not turbulent flow. It is a rigorous
analysis within the usual limits for incompressible viscous Newtonian flow, namely that
solution of the Navier—Stokes equations exists, is locally unique, and is smooth. It valid
first- and second-order conditions on smooth mean boundaries which are therefore L
numerically because the details of the boundary need not be taken into account.
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The outline of the paper is the following: Section 2 contains a description of the proble
The first-order effective condition is obtained in Section 3; itis shown that it is equivalent
a mean flat wall between the min and max height of the roughness. Then the second-c
effective boundary condition is derived and discussed in Section 4. These conditions sh
be used for additional precision or in certain cases when the roughness type changes at |
as illustrated in the numerical section. Second-order conditions are no longer equiva
to a wall displacement and, interestingly enough, they are nonlinear. Numerical tests
two types of geometries are presented in Section 5. The first- and second-order condi
are compared to simulations with a full treatment of the smallest geometrical length sc
Good precision is obtained and validates the theory.

2. DESCRIPTION OF THE PROBLEM

2.1. Description of the Geometry

In the following, we give a description of a dom&ilf of the planR? whose boundary
is partly rough with periodic roughness elements. Although the situation is rather clear
Fig. 1 and Fig. 2, a mathematical description is needed for the coming development.

Let (e1, &) be an orthonormal basis of the pl&3 and letY be a domain oR?, semi-
infinite in thee, direction, such that the boundary 6fis decomposed into four parts (see
Fig. 1),

Y =YL UdY2U Y3 U Yy,
with
Yy = {0} x [0, oo],
Y, = {21} x [0, o],

andaYs is a bounded curve made of one piece such that

aY1NaYs = {(0, 0)},
aY2NaYs = {(27, 0)}.

Finally, Y, is the boundary of a finite number of obstacles (possibly empty) strictly col
tained in the domain delimited b)¥; U Y, U dY3. We also assume thatis contained in
the half planex; > 0. Thus zero is the infimum of the coordinateof a pointinY.

SYl 8Y 8Y2

FIG.1. ThecellY.
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FIG. 2. The domaing® andQ®°.

Let ¢ be a small positive real number, and ¥¢tbe the image o¥ by the dilatation of
ratio ¢ and centex0, 0). Let ©¢ be the semi-infinite domain d&? obtained by merging
together all the images of° by the translations bys2kese;, wherek takes all the integer
values. The infinite domai®* is contained in the half plane > 0.

Let © be a bounded domain &? intersecting the lindx, = 0}. We denote by2° the
domain2 N {x, > 0} (for simplicity, we suppose tha&2® is made of one piece), and we se!
['=0Q°N{X2=0}= (1, y2) x {0}.

Consider now®* N Q. This set is nonempty, sind@® touches the lindx, =0}. Fore
small enough®® N Q has a fast oscillating rough boundary with wavelengttz 2The
amplitude of the roughness is also of ordefiVe noteQ2®* = ®° N Q andI* is the rough
part of 9Q¢. Whene — 0, Q¢ converges t@° (see Fig. 2).

In the following, we shall use the notatiam,, x,) for the macroscopic variables and
(Y1, ¥2) for the microscopic variables:

Vi = Xi/e.

Remark 2.1. For simplicity, we have chosen to work in two dimensions. Of course,
that follows can be generalized to the three-dimensional case.

2.2. The Main Assumptions

The basic problem consists of predicting the drag and the friction generated by a vis
fluid over the rough surfacg®.
We consider a flow modeled by the usual steady-state incompressible Navier—St
equations,
u-vVu® —vAU* +Vp°* = f inQ°,
V.-u*=0 inQ?
u*=0 onaQ°’.

For simplicity, we assume that the support of the source teapnes not intersedt®.

Remark 2.2. Of course, it is possible to propose more complex boundary conditio
For example, if the bounda§Q° is partitioned into two partsdQ® =921 U a5, with
' c 9Q5, a possible set of boundary conditions is

u® =u; 0nadf,
=0 onoQs.

The coefficient is the viscosity. Whem is small, the flow exhibits boundary layers nea
the walls. Thus, the problem has three characteristic lengths: in addition to the macros
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scale (linked ta2 and f) of orderO(1), there are the Prandtl boundary layer scale (of orde
/v for laminar flows) and the roughness scal&\Ve are interested in the case when thes
scales are well separated and, especially, when

NI

In this case, it is reasonable to expect a viscous sublayer o€xigedue to the roughness
elements inside the Prandtl boundary layer.
For simplicity we shall focus on the asymptotical regime

V = lLE.
Therefore, the problem of interest for us is

U - Vu® — ueAUf + vpe = f  in Qf,
V.-ut =0 inQ°, (5)
u* =0 onoJKe.

Of course, other regimes are possible and lead to other asymptotic expansions, buf
has to keep in mind that asymptotic expansions are rather artificial since for realistic ca
the viscosity and the geometry are both given and fixed.

We shall also assume enough regularity on the data such that all the Navier—Stc
problems that we shall introduce below have isolated branches of solutions, correspon
to laminar regimes. This is, however, mathematically an open problem since the demair
also depends on

In the coming development, we shall céll the partial differential operator

LU, p)=u-VU—ueAu+Vp. (6)

In what follows, we shall make the important assumption that the mean flow is not t
much affected by the roughness; i.e., the solution of (5) is a perturbation of the solutior
the problem:

u®-vu° — ue AU +vVp° = f inQ°,
V.ur=0 inQ°, (1)
u’=0 onaQ°.

Inthe case ofthe linear Stokes equations or other linear equations[1, 2, 4], this assumj
caninfactbe rigorously proven. The soluti@ri, p°) of (7) will be referred to as the zeroth-
order approximation ofu®, p?). This approximation just consists of approaching the roug
wall by " (x, =0).

We also assume that the solution of the above system describes a laminar flow; i.e.
Prandtl length scales apply &h

20

=0 Y?). (8)

au° a2u°
=0Ww™?), —— =00,

X2 aX5 9X10%2
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For a turbulent regime, the same work as below can be carried out, at least whet
roughness remains in the viscous sublayer. This will done in a forthcoming work.

3. THE FIRST-ORDER ASYMPTOTIC EXPANSION AND
THE RELATED EFFECTIVE CONDITION

We first discuss the implementation of the first-order effective boundary conditi
namely what has to be done in practice. The algorithm below is the practical resul
the ansatz given in Section 3.3. Therefore, Section 3.1 can be seen as a summary
main results, whose justifications are given in Sections 3.3 and 6.

3.1. The First-Order Effective Boundary Conditions; The Practical Implementation

For practical reasons, the effective boundary condition will not be imposed, dut
slightly above; for that, les be a positive real number. We introdu@é the subset of2°
given by

Q' =Q°N{x > ¢}, 9)
and we denote by?,
G’ = 9% N {xp = 8¢). (10)

See Fig. 3 (we will choosé later). We propose to approximaie’, p°) in Q° by (u?, pb),
the solution of the effective boundary value problem,

ul-vul —pueAut +vpt = inQ’,
vV.ul=0 inQ’,

ul=0 ona’\I?, (11)

up | m

EU— + =
on - ylis

ul=0 onr?’
ui=0 onr?,

whereu, uj are the two components at.
Here the constant? is found by solving theell problemin the cellY; find the velocity
field x* and the pressure fietd* defined inY, and the constant paramesg such that

e x!andr! are 2r-periodic in the horizontal variable (notgs).

FIG.3. The domairc’.
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o x!'— xlei, n'and all their derivatives decay fast (exponentially, in fact) as the vertic

variable (notedy,) grows.
L]

—uAx*+vrt=0 inYy,
V.xt=0 inYy, (12)
Xl = —Y2€ 0n 0Y3 U 0Ys.

It will be proved that this problem has a unique solution (see Section 6.1).

It can also be proved (cf. Theorem 3.2 below) that the constant! is positive and
smaller than the amplitude of the roughness elements. Thereféres dhosen such that
¢ is greater than the amplitude of the roughness elements, the Navier-Stokes problem
is well posed becausgl + 8 > 0.

To summarize, in order to compute the approximatioh p*) of (u®, p?), itis necessary
to:

1. approximate numerically the solution of the cell probleng)if, 1, x1), by a finite
element method, for example.
2. solve the Navier—Stokes problem (11) in the dongin

Let us emphasize that these results above apply to periodic roughness, as will be ¢
from the asymptotic expansion below. They may be generalized to perturbations of peric
geometries, for example when the wall is parametrized by the product of a smooth
function ofx; times a periodic function aof; /¢.

To our knowledge, such a constructive approach is not known for (random) gene
roughness.

Note also that the constapft depends only on the geometry and not on the averac
flow; thus, its computation is completely independent. Computing the constaatnot
very time-consuming, since only one period is considered, and the grid need not be
fine (there are no fast scales in the cell problem (12)). Then, the numerical approxima
of (ut, pt) is much cheaper than that af¢, p?), simply because the geometry is simpler
and the mesh does not need to be refined much in the horizontal direction. This will be v
illustrated by the numerical tests below.

For nonstationary problems, there can be a fast time scale related to the roughr
However, it is sensible to think that in the rough region, the flow relaxes quickly in tt
fast time variable so the the mean flow does not have fast variations in time. In this c:
we would look for boundary layers that are corrector independent of the fast time varia
(steady state in the fast time variable). The same ansatz as below would show that the
problem would be exactly (12), because the time derivative does not appear at leading o
Therefore, only the steady state solution of the cell problem is of interest, and exactly
same procedure as for stationary problems can be used. The cell problems must be s
once and for all, before starting the time scheme, so the computatjori®fot expensive.

Note, finally, that this method does not work if the flow far away from the roughness h
fast time or space scales, compared to those induced by the roughness.

3.2. Preliminary on the Two Scales Expansion

Before starting the description of the ansatz, we introduce the rules of calculus wh
will be used in the multiple scales expansion below; in the following, we will conside
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functions®(x, y), x € Q°, y €Y, 2r-periodic in the variabley;. We will associate teb
the function®(x, x/¢). We introduce the operators of derivation with respect to the fe
variable: the partial derivative with respect yois denotedd/ady;; Vy = (3/3y1, 3/3Y>)
is the gradient with respect tp In the same manner one can define the Laplace and
divergence operatoisy, Vy.

In order to present the computations in a simple form it is useful to considexfirs
andy as independent variables and to replace yexy x/¢. The rule of derivation is the
following: applied to® (x, x/¢), the operatoh/dx; becomes

a 10

+-—.
9% € Y

Note that this rule of computation is rigorous when dealing with prod@ctsf (x)g(x/¢)
and is formal in the general case. However, these rules can be justified mathematicall

3.3. The Ansatz

Here, we show how the results summarized in Section 3.1 are obtained. In orde
improve the approximation aff and p®, we propose the following ansatz:

N
U (x) ~ ut(x) +eud, <x, §>’
(13)
s 1 1 X
p*(x) & p(X) —|—spB,_<x, ;)

Hereul, (x, x/¢) and pi, (x, x/e) decay exponentially fast as the variablge tends to
infinity and they are essentially periodic in the variakj¢s. Therefore i, (x, x/¢) and
pi.(x, X/¢) are callecboundary layer correctorsThe termsuit(x) and pt(x) are called the
macroscopic first-order correctionsf u® and p° because they do not depend on the fa:
variablex/e.

Remark 3.1. As it will appear from (15) below, when (8) is satisfiedis, (x, x/¢) and
epa_ (X, X/¢) are of order/e for x/& ~ 0. The small parameter in the asymptotic expansic
is /¢, note.

More precisely, these functions are obtained by carrying out the following steps:

Stepl. We evaluate the error made by replac{ng, p®) by (u°, p°) in (5). In fact the
error comes from the fact that the no-slip conditions on the roughi¥adlre not satisfied
by u°. However, sincei® vanishes oi” and sincd™ is close tdl", the error should be small
and is given by a Taylor expansion in tkevariable:vx € I'*

a%u°
2
X5

au°

u°(x) =
() 83X2

X2 2 X2 2
(X1, O); +e (X1,0) (S(X);) , 0<é <1

Here, the assumption that (7) describes a laminar flow implies that, at leading order,

au°
X2

u°(x) ~ ¢ (X1, 0)@ onrI®. (14)
&
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Furthermore, from the no-slip boundary conditionIldand sinceau is divergence free,

au° aug
X, 0) = —*
8X2( 10 X2

(X1, 0) ey,

whereuj is the first component af°.

Step2. We see that the error in (14) at leading order is the product of a function
the macroscopic variable;, namelye(duj/9xz) (X1, 0) times a fast oscillating periodic
term in the variablex;, namelyx,/e on I'?, seen as a function (possibly multivalued)
of x;. Therefore, it is natural to look fau, (x, X/e) and p}, (X, x/¢) as the products of
(dug/3x2) (X1, 0) times functions of the fast variabig e, periodic in the horizontal direction
and fast decaying in the vertical direction. Let us lookdgy (x, x/¢) and p3, (x, X/¢) of

the form
ub (% X)) = Mo, 00 (1 (%) -
BL as == 3X2 15 X s X

1 X oug 1( X
X, — | = X1, 0 -1,
pBL( s) axz( 1O (s)

where (x1) is a constant vectory(x/e) andwi(x/e) are 2r-periodic functions in the
variablex; /e, such thaty(x/e) — (x1) andx' decay fast ag,/e grows. The reason for
writing the constant vectofy!) separately will appear soon. In the following we shall
denote bySpe(Y) the space of the functions M, fast decaying in the variablg as well
as all their derivatives,s2-periodic in the variabley; .

Step3. Let us plugu® + sud, (x, X/e) and p° + ep3, (X, x/&) in (5):

(15)

auj
o, 00 O (=Xt + Vyr)
X2

L7(u +eup, P°+epp) — f) =

+ smaller order terms (16)

The convective terndus/9xz) (X1, O)u® - Vyxl might seem to be of the same order, but

e sinceu° vanishes o, u° ~ (du/9x2) (X1, 0)(X2/¢€).
e V,x! decays exponentially fast as/s goes to infinity.

Thus the two factors compensate and the convective term is actually smaller.
Therefore x! andz! have to be chosen so that

—uAyxt+ vyrt =0. (17)

In the same manner,

20

oug a°u
v (w +euéL) = 8—)(;(x1, OVy-x'+e L

X1, 0)xL + smaller order terms (18
8X28X1(1 )X1+ ( )

The leading order term in (18) {®u;/dx2) (X1, 0)Vy - x1; therefore x* must satisfy

vy-xt=0. (19)
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There remains to look at the boundary condition[tn

X X auy
U+ eUp =¢ (—2e1 + Xl(_) — (Xl>) axl (X1, 0) + smaller order terms  (20)
£ & 2

onT*¢. From (20), it is very tempting to impose that
XY = (x') = —y2€1 ONdY3UdVa.

However, with this condition, the problem satisfieddy(y) — (x1), 71(y)) becomes

—nAy(x* = (X +Vyrt =0 inY,
Yyt = () =0 inY,
xt—(xY) =—y2e1 0ndYsUdYs, (21)
Xt = (xh) € Sher
t € Sper.

It can be proved by taking, for example, the very simple case whéye- (0, 2) x {yo =
C > 0} (the problems becomes 1D) that this problem has, in general, no solutions. There
we have to relax the boundary condition Bfy and we impose that

x!= —Y2€ 0NdYzUadYy, (22)
and the error o™ is
uO
u° 4 eug, = —e(x %) ax; (X1, 0) + smaller order terms (23)

It seems from (23) that ifx ) # 0, no progress has been made by adding to u°, since
the error on the no-slip condition drf is of the same order. However, a closer inspectio
of (23) shows that the error at leading order no longer depends on the fast variable
Therefore, this error can be corrected by replacinfg p°) by (u*, pt), whereu® and p*
do not depend oRr/¢ (see Step 5 below).

Step4. We can now write the problem satisfied @y*, (x1), 7%):

—,LLAyxl—l—Vynl:O iny,
Vy - xt=0 inYy,
xt=—y,e 0ndYsUaY,, (24)
xt— (") € Sher
nleSper.

Let us introduce the spaclef,e,(Y) of the functions inY, 2x-periodic in they; variable,
and square integrable ivi, and the spacéi . (Y) C L3.(Y) of the functions whose first
derivatives belong tdlﬁer(Y). We have the following result.
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THEOREM 3.1. There exist a unique pair of functiorfg?®, 71) and a unique vector
(x}) € R? such thaty®— (x1) e Hoe (V) NSZei(Y), € L3 (Y) N Spe(Y), and (24) is
satisfied in a weak-sense. Moreover!) is horizontal

This theorem will be proved in Section 6.1.
Step5. There remains to correct the error in (23) by replading p°) by (u?, pb)
solutions of the same Navier—Stokes problem with the new boundary conditibn on

ul-vul — peAut +vpl = f in Q°,
v.ul=0 inQ°,
(25)
ul=0 onaQ°\T,

ouyg
1 1 1

u- = onTl.
e{x )ax2

We have constructe@ (x) + sug, (x, X/¢), pX(X) + epi, (X, X/¢)) approximatingu?, p).
It can be proved (at least in the linear case; see [1, 2, 4]) that this approximation is one o
(in \/¢) better thanu°, p°), but it is not the purpose of this paper.

Remark 3.2. In order to avoid discontinuities at the transition between the rough ar
flat walls, it may be better to take

oug —
(1) = B0 (1) - i )ote

a o
DéL(X» g) = U1(Xls O)ﬂl(g)wxl),

dX2

whereg (X;) is a real smooth function taking the value 1 in the intefyak- ¢, > — ¢), 0in
(—o00, y1) N (y2, +00), and with the derivative bounded /<. Thus the boundary layer
correctors vanish smoothly at the transition zones between the rough and smooth bound:
With this choice of boundary layer correctors and the functiars p!) defined in (25),
the functionsu® +eul,, p!+epg, plugged into (5) produce also an error localized ta
the transition zone, which can be neglected at this order of approximation, since we
interested in energy norms.

Step6 (The effective boundary conditignsn practice, computingu®, p°) and then
(ut, pt) consists of solving two Navier—Stokes problemsn which is too expensive. A
better idea is to notice that neBru' ~ u°, and that the boundary condition (25) Brcan
be replaced by the Navier boundary condition,

aul
3X2

1

ul =e(xh onT. (26)
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If x10, the boundary value problem becomes

ut-vul — peAut +vpl = f, inQ°,
v.-ul=0, inQ°,

ul =0, onaQ°\T,
\ 27)

ul=0, onT,
u}=0, onl.

However, (27) may be ill posed if the constaitis negative due to the loss of ellipticity,
because its variational formulation contains the term

u
X r

To cure this problem, we introdu&®® given by (9) and we solve (27) i®2° rather than in
Q°. A Taylor expansion onl°,

22320

u°(Xg, 0) = U°(Xq, €8) 5 o (X1, 0€d),
2

£6) + ——

. (28)

Jue 92U
0 +ed- > 2 (X4, 085),

&) =

combined with the incompressibility condition shows that

ui  po
eu— 4+ —u; =0, u;=0 onl
Man e 1 2
duj K 5
= eu— + u; =0, =0 onTl
Man Ts 1 2

up to smaller order terms. This is the effective boundary conditiofi’agiven in (11).

3.4. Bounds on the Constaptt

From a Taylor expansion analogous to (14), it can be seen that the first-order effe
condition is equivalent to a no-slip condition at the effective heigh 1. Thus, the ansatz
above is nothing else but the rigorous computation of an effective wall, equivalent at
order to the rough wall, which cannot be foreseen otherwise.

One may ask the question: is it possible to bound the effective height? It is rea-
sonable to expect thatx! is bounded from below by 0 (the minimal value wfin 9Y)
and from above by the amplitude of the roughness (the maximal valygein® Ys U 9Y,).
Indeed, this is true, as will be proved in Section 6.2.

THEOREM3.2. If Hmax= MaX,csv,uay, Y2, the constant- x I satisfies the bound

0< —F < Hmax- (29)
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4. THE SECOND-ORDER EFFECTIVE BOUNDARY CONDITION

Here, we propose to carry out the ansatz one step further. We are going to obtain a se
boundary condition which will take into account some convection effects.

4.1. The Second-Order Effective Boundary Conditions: The Practical Implementation

We propose to approximate®, p?) in Q° by (u?, p?) the solution of the Navier—Stokes
problem,

u?-vVu? — ueAu? +vp? = f, inQ?,
V-u?=0, ing’, (30)
u?=0, onaQ\I?,

with the nonlinear second-order effective boundary conditiofrgn

oz o, 1((—82—ap2 Y
U— + ———U] + — —e(8xr1+ = —x3 )| — —pu—="—(u =0,
n = yI4s b xI4s T2 T o (Xl+5)2<1)

(31)

us =0,

whereu?, u3 are the two components of. Here x1 is given by (12), and the other two
constantgc2 and x 2 are computed by solving the cell problemsyin

1. find the velocity fieldy2 and the pressure fietd? defined inY, and find the constant
parametery 2 such that

—nAx2+ V2= —(yoe1- Vx4 xjer + xt- Vx1), inY,

V.x?=0, inYy,
X2 = 0, on 3Y3 U 8Y4, (32)
x%—x2e1 € Sk
7.[2 € Sper.

2. find the velocity fieldy® and the pressure field® defined inY, and find the constant
parametery 3 such that

—uwAx3+Vrd=0, inY,
V-x3=0, iny,
V2
x3= —52 e, onaYsNaYa, (33)
x°—x3e € 8%,
73 e Sper-

To summarize, in order to compute the approximatioh p?) of (u?, p?), the algorithm
is the following:

1. approximate numerically the solutions of the three cell problems (12), then (32) &
(33) by a finite element method, for example;
2. solve the Navier-Stokes problem (30), (31) in the dorggin
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4.2. The Ansatz

In order to improve the approximation of and p?, we propose the ansatz
X X
Ut (X) &~ U(x) + eud, (x, ) + g2ug, (x, >
& &

X X
p*(x) ~ pA(X) + epgL (x, ;) + &2p3. (x, ;),

where the first-order boundary layer terms have already been computed. We carry ot
same steps as in Section 3.3.

Let us evaluate the error made when we pldg-sul, , pt+ep, in (5). To compute
LE(ut+eud, pt+eph) at leading order, we need to know, at leading order, the thr
following terms:

ul.vul ~e du Z(X 0 ((xh + ) Vyxt X\,
BL ™~ 9%, 1, Y2 €1 yX e )

8U1 X aul 2 X
UpL - VU' = 5041, 0) (x1<g> - <x1)> ATEES (8—)(;) (X4, 0)x21<g>el;
b woh = (58] 0 ((2) - ) ()

Therefore, the leading order term 6f(u! + eul , pt +ep)) is
L7 (u' +eugy, p' +epg.)
gul\? X X X L[ X
_8<3X ) (X1,0)<yzel Vyx ( > +x2( )e1+x < ) - Vyx (;))
+ smaller order terms (35)
In the same manner, the error on the divergence-free condition is

a2ul
3 Bxl

V- (ul+eup) = (x1,0)(x* - &1 — x) + smaller order terms

Since|(82ui/ax28x1) (X1, 0)| < [(dul/8%2) (X1, 0)], this error need not be corrected at lead
ing order.
The error on the boundary condition ©¥ is at leading order

2
au1

2
2 &

,0 re. 36
2 0% —(x1,0)e; on (36)

(u' +eup ) ~

Asin Section 3.3, we notice that the errors in (35) and (36) are the products of fast oscille
periodic terms by slow varying functions, name{yul/dx2)2(xs, 0) and(d?ui/3ax3)(x1, 0).
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Therefore, it is natural to look for correctors of the form
X — aul X 92ul
ug () = <x2<g) —x281> (a 2> (X1, 0) + ( <;> - X el) 0% L(x1,0),
X aul 2 X 82 1

where x?, 3 (resp. 72, %) are functions with value iiR? (resp.R), periodic in they1
dlrectlon andx x3 are two constant parameters. We impose further #fat x2e;,
x2— x3e, w2, andx 3, as well as all their derivatives, decay exponentially faghagoes
to infinity.

Exactly, as in Sections 3.3, we see from (34), (35) th@t 72, x2) should satisfy (32)
and that(x 3, 73, x3) should satify (33). The existence and uniqueness of the solutions
(32) and (33) can be proved as for Theorem 3.1.

Exactly as in Section 3, we find that the errors in (34), (35) are corrected by the bound
layer terms defined in (37), except that there remains an error on the no-slip conditior

¢, namely
—(u\? 92}
2 2 1
_8 ~ + b
(X <8x2) x 8x2 &
which no longer depends on the fast variakle. To correct it, we introduce the second-

order macroscopic correctioiig?, p?) satisfying the Navier—Stokes equationsin with
the new second-order effective boundary condition§ on

—3Ul — aul 2 —32U1

2 _ 1 1 2 2 1 3 1
u- = — + — + onTl'. 38
X 0X2 GLre <X <3X2> X 3X§ & ( )

Remark 4.1. Here, we have neglected the contribution of the limiting functdntro-
duced in Remark 3.2. In fact, the error produced by this function liginorm of the same
order as the error computed in (35), but it is localized in a zone of dian@ter. For a
complete analysis, this error term should also be corrected. The related corrector dep
on the fast variable /e and decays (but not exponentially) away from the transition zon
Since it remains localized in a region of small size, it can be neglected if we are interes
in a second-order approximation of the flow far enough from the wall.

37)

The related effective conditionsAs in Section 3, it is more convenient to compute
(u?, p?) by changing slightly the boundary conditions (38)Iorindeed, one may use the
second-order effective boundary conditions

—au? —_[aut\? —.3%u?
2 _ 1 2 > 1 3 1
uc = — — onTl. 39
X 3X2el+8 (x <8x2) +x e e (39)
Note that the boundary condition (39) is nonlinear. In order to simplify the notations, v
set

for the rest of this section.
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If x1+0, (39) can be written in a more handy form,

ouq " mw of— oup 2 —82U1
u :O, EU— — U] — =¢ 2 — S =O,
2 Pan T T STt M ak) T e

where the subscripts indicate the coordinates.

Moreover, by using the first-order agproximatiorﬁufl/axz given by (25),(u/x He?x?
(du1/9x%2)? can be replaced by (x2/x 1 )(u1)2. With this trick, we avoid having the non-
linearity on a derivative.

Furthermore, the Navier—Stokes equations on the boundary indicate that at leading c

92U, ap
— (X1, 0) &~ — (X1, 0).
/’Lgaxzz(l ) 8X1(l )

Therefore, it is possible to obtain the set of boundary conditions:

3
[k X
:1U1+8:1

au
Up =0, spu— +
an X X

p - x2
— —pu=mU)" = 0.
0X1 Xl

As for the first-order approximation, the boundary value problef2’imay be ill posed.
However, it is possible to construct a well-posed problem in the doféidefined in
Section 3.1. From a Taylor expansion, we obtain that

262 82

duy 1 343
U1(X1, 0) = U1(Xq, €8) — 86— (Xq, €8 ——— (X1, €6 0(e°8),
1(X1, 0) 1(Xq, £8) 83X2(18)+28x§(18)+ (£76%)

duq duq 82U1 242
—(X1,0) = — (X1, €8) — e6—— (X1, €6 O(e°59),
axz(l,) 8X2(la5) € a)(5(18)+ (£76%)

2 2
<%) (X1, 0) = (%> (X1, €8) + O(&d).

0X2 X2
Thus, the effective second-order boundary conditionsare
u, =0,
auy M , I — 82 N\ d%u  —/dup\?
_- _ u — Syl — — 3 ) — 42 = =0,
8M3n+xl+5 Lte x4+ X +2 X" ) onz on

or, again,

u; =0,
(40)

dug W 1 < < — 8 — ap X2 5
EnN— + = U + = —e|8xt1+ = —x3 | — —u—=—""—(U1" ) =0,
an x1+6 ! x1+36 2 0X1 (x1+6)2 1

and we obtain (30).
In the two sets of boundary conditions above, we have neglected the corrections fror
Taylor expansion ofl,, because they are of a smaller order.
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Remark 4.2. We have seen in Section 3.4 that the first-order condition is equivalent
a no-slip condition on a flat wall at heighte x1. This is not the case in general for the
second-order effective conditions.

5. NUMERICAL VALIDATION

5.1. General Features

The numerical validation is done with a 2D steady-state Navier—Stokes code. The |
cretization is done by means of stabilized isoparam&iie- Q; elements; we use a mesh
composed of quadrangular elements. For each quadrgnhgieghe mesh, the unit square
may be mapped tQ by a simple transformatiofig, linear with respect to each coordinate.
Both the pressure and the velocity components are discretized in the space of contini
functions vy satisfying the following property; for any eleme@, the functionv, o Tg
defined on the unit square is linear with respect to each coordinate.

However, using a straightforward Galerkin method with the same spaces for the pres
and the velocity components is well known to lead to an unstable discretization of (5) as
discretized pressure can have spurious oscillating modes (checker board instabilities [
The remedy for that is tetabilizethe method, by adding suitably weighted element-wise
residuals to the original variational formulation. These residuals may be constructed
taking in each element the least square formulation of (5) (see [10, 19]).

The nonlinear discrete problem is solved with a Newton method. A single step of t
Newton method involves solving a nonsymetric linear system here with a GMRES algorit|
[16].

The direct solution of (5) with the no-slip condition on the rough wallis computed
with high accuracy, i.e. with a large number of elements. It is compared with:

1. The solution of (7) with a no-slip condition dhand with the domain of computation
Q° (the boundary condition is referred to as the zeroth-order wall law). As for the next t
problems, the mesh may be much coarser than for the direct computation.

2. The solution of problem (11) with the first-order effective boundary condition on tf
smooth wallx, = §e¢.

3. The solution of problem (30) with the second-order effective boundary condition |
the smooth walk, = §¢.

For problems (11) and (30), the effective boundary condition has not been imposec
" but atx, = 8¢. The new domain has stepsxat=y; andx; = y, because; jumps from
0 to §¢. These singularities of the domain are natural, since the solution of the effect
problems are singular a = y; andx; =y». The choice of§ is clearly an issue of the
proposed method; indeedl,should be large enough so that the effective problem is we
posed and small enough so that the lige=§¢ is contained in the mean flow laminar
boundary layer.

We have also tried the effective first and second conditions,d26) and (39), but this
leads to linearized systems with very small Gauss pivots, and the corresponding solu
strongly oscillates near the wall.

In the tests below, the wall is made of one piece; i.e., thé%eis empty.

For the last two procedures, the linear Stokes cell problems (24), then (32) and (33) r
to be solved. The cells are artificially truncated in tedirection and are limited by a
sectiondYy: y, = H with H large enough. In practice, since the solutions converge ve
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fast asy, grows,H can be chosen 5 to 20 times the size of the roughness element. The
problems involve:

1. periodic boundary conditions on the velocity and the pressus&'paY,. Periodicity
is crucial to obtain the fast decay of the solutionyagrows and need to be imposed with
accuracy. If the periodicity was not achieved, the Fourier modes imould not be well
separated, and the exponential convergence to a constgrt-aso would not hold.

2. anartificial boundary condition @Y. Itis possible to impose an exactly transparer
integro-differential boundary condition fort, 71 andy?, 72 by using the Fourier analysis
of 6.1. However, it has proved sufficient to take an homogeneous Neumann condition (|
Dirichlet condition) for the first (resp. second) component of the velocity; for example,
ixll =0, xa=0 ondYy.
on
The values of the constantgd, x2, and x2 are computed by taking the mean value of th.
corresponding velocities oYy .

The cell problems do not need a very fine mesh. The corresponding linear system
solved by means of a direct method (Gauss factorization).
The comparison between the different solutions are done on several outputs:

1. the contour lines of the velocity components or the pressure. For comparing the
solutions, the same contour lines are displayed on the different figures. This is made po:s
by the INRIA graphic package VIGIE [9].

2. the restriction of the horizontal velocity on a given horizontal cross section above
the rough wall.

3. the frictionC; = ue(duy/x2) on the same horizontal cross section.

5.2. Flat Plate with Nonsymmetric Roughness

The domair2° is (0, 1.0) x (0, 0.5). The plate is located on the axis=0. The plate is
flat in the interval O< x; < 0.18 and has periodic roughness in the intervaBG:< x; < 1.0.
The period of the roughness elements is 0.05 and their maximal height is 0.025. The r
domain can be seen on Fig. 5.

A no-slip condition is imposed on the wady = 0.5. At the inflow boundaryk; =0, the
velocity is set to a developed profile of velocity on a flat plate. The viscosity is taken tc
10-3. We choose:r = 0.04 ande = 0.025.

At the outflow boundary; = 1.0, an homogeneous Neumann (resp. Dirichlet) conditic
is imposed on the first (resp. second) component of the velocity.

The horizontal size of the ce¥ is 2, and the cell is artificially truncated @t =5. The
amplitude of the roughness element is 1 in the microscopic variables. The mesh for the
problems has 2500 elements.

The values of the computed constants are

x1=-084 x2=26x10"* x3=-036

Note that the mean value g on dYj3 is 0.25, which is much less than the effective heigt
—x1=084.

For the first- and second-order effective boundary value problems,the wall law is impc
onthe linex; = § = 0.025. Figure 4 contains the contour lines of respectiyglyy 2, andy 3,
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FIG. 4. Contour lines ofy}, xZ, andx? for the nonsymmetric roughness and cross sectjpasl.

aswell as a plot of their value on the cross sectipa 1. The convergence to constant values
appeatrs clearly. On Fig. 5, we display the horizontal velocity for the direct solution and
three approximations af® listed above. It is clear that the roughness elements lie withi
the boundary layer of the mean flow: therefore, the asymptotic expansion above is sens
On this figure, the difference between the four computed solutions is not easily seer
zoom (Fig. 6) indicates that there are important recirculations in the cavities delimited
the rough wall.
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DIRECT_COMP. ORDER 0
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FIG.5. The horizontal velocity for the four Navier—Stokes problems.

DIRECT COMP.

FIG. 6. Zoom in one roughness element.
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FIG. 7. u;(up) andC¢ = ne(duy/xz) (bottom) on the cross section = 0.035.

On Fig. 7, we present the horizontal component of the velagitgnd the coefficient;
on the cross sectioxy, = 0.035. Figure 7 clearly indicates that the effective boundary cor
ditions yield a remarkably accurate approximation of the exact solution, while the no-<
boundary condition o' is not sufficient. As expected, the error remains important in th
transition zone between the flat and the rough parts, but decays fast in the rough zon
principle, this error may be addressed by an additional corrector, which would not be
local asy?, x2, andy?® and, thus, would be much more difficult to compute.
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It is not clear here that the second-order effective conditions do better than the first ¢
ones.

5.3. Flow in a Channel with Two Kinds of Roughness

This test is concerned with a flow in a channel. The doraxiis (0, 1.0) x (0, 0.5). The
bottom boundary is flat in the intervals (0, 0.25), has nonsymmetric periodic roughnes
the interval (0.25, 0.75), and has sinusoidal periodic roughness in the interval (0.75, 1).
nonsymmetric roughness is the same as in 5.2. The period of the sinusoidal roughn
0.04 and the amplitude is 0.01.

A no-slip condition is imposed on the wath =0.5 and at the bottom boundary. A
parabolic profile is imposed at the entry of the channel. The boundary conditigps-dt
areu, =0 andp=0.

The viscosity is taken to be 18. We choose to takg = 0.4 ands = 0.025.

The direct computation is done with 12000 elements. Refinement is needed nea
rough wall, simply to take the complex geometry into account.

For this test case, we have two kinds of cells, associated respectively with the |
symmetric and the sinusoidal roughness. For the nonsymmetric roughness, the cell |
same as in 5.2. For the sinusoidal roughness, the horizontal size of the cell is 1.6, an
cell is artificially truncated ay, =5. The amplitude of the roughness in the microscopi
coordinates is 0.8.

The computed constants for the symmetric roughness are

x1=-03, x2=910° x3=-005

For the first- and second-order effective boundary value problems, the wall law is impc
on the linex, =§ = 0.025. The number of elements used for the boundary value proble
on the flat wall is around 2400, i.e. five times less than for the direct computation.

On Fig. 8 the contour lines of respectivety, x?2, and x3 for the sinusoidal geometry
are displayed, as well as a plot of their value on the cross segtier®.8. The convergence
to a constant vector appears clearly.

On Fig. 9 and Fig. 10, we show the contour lines for the horizontal component of
velocity and the pressure for the direct computation and the three approximations. |
again, the zeroth order condition is not accurate enough, while the other two lead to
ible improvements. On Fig. 11, we present the horizontal velocity on the cross sect
X2 =0.025 (just above the rough wall) and = 0.035. Note that the oscillations causec
by the rough wall are smoothed whepn grows from 0.025 to 0.035. It can be seen the
the second-order effective boundary condition led to a better approximation of the solt
than the first order. This is best seen on a zoom (see Fig. 12).

The friction coefficient ak, = 0.045 is plotted on Fig. 13. Here also, the second-ord
effective boundary condition permits us to approximate the solution better than the
order does. However, the first-order condition is already very accurate, and it is not
that it is worth using the second-order condition.

5.4. A Rough Backward-Facing Step

We deal now with a backward-facing step case at Reynolds number 250. The geor
is displayed on Fig. 14. Here again, there are two kinds of roughness. For this case, th
a recirculation behind the step.
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FIG. 8. Contour lines ofx}, xZ, andx? for the symmetric roughness and cross sectiprs0.8.

On Fig. 15 we plot the tangential velocity and the friction coefficient behind the step
0.55 above the wall. Here, it is very clear that the second-order wall law performs mt
better than the first-order one, especially in the recirculation, and the approximation is v

good. Only the second-order wall catches the size of the recirculation.
Finally, the streamlines are displayed on Fig. 16.
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DIRECT_COMP ORDER 0

FIG. 9. The horizontal velocity for the four Navier—Stokes problems.

6. APPENDIX

6.1. Proof of Theorem 3.1

In order to simplify the notations, we shall drop in the proof the superscriptd Bnd
1. We will write x for x! andx for 1.

DIRECT COMP. ORDER 0

(T

ORDER 1 ORDER 2

FIG. 10. The pressure for the four Navier—Stokes problems.
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FIG. 11. u; onthe cross sections = 0.025 andx, = 0.035.

The proof consists of studying an equivalent boundary value problem in a bounded
main obtained by truncating the c#llin they, direction. In order to simplify the notations,
let us assume that=1. LetYy =Y N{y> < H} andXy be the sectio®Yy N{y,=H}.
Assume that the cell problem (24) has a solutignz).
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FIG. 12. Zoom of Fig. 11 (up) above the sinusoidal rugosities.

Then, iny, > H, these functions can be expanded in a Fourier series in the vayigble

+00
xay) = Y xik(y2) €,

k=—00

—+00
Xa() = > xax(y2) €,

k=—o00
+00

my) = Y mlyn) €,

k=—00

wherexi, x2 are the components ¢f, and x1 k (resp.x2k) is thekth Fourier coefficient
of the first (resp. second) component)af The Fourier coefficientg k, x2.k, andmy are
functions ofy, for y, > H. Since the Stokes equations are homogeneous in the half-sf
y> > H, we obtain easily the following set of ordinary differential equations forktie
Fourier coefficientgk £ 0) of x andx:

—x{k + K2x1k +ikme = 0,
— X3+ Kxok + 7, =0, (41)
iK1k + X2k = 0.

The solution of (41) can be computeditH) is known. Skipping the details we obtain tha
for k#0,

x1k(Y) = (xax(H) + k(=sgnk) x1xk(H) — i xax(H)(y — H)) e ko=H),
x2k(¥) = (ax(H) 4+ k(=i x1.x(H) + sgnk) 2k (H)(y — H) e k0= (42)
T[k(y) = 2k(Sgr‘(k)X2’k(H) — IXl,k(H)) e*k(Y*H)’
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FIG. 13. C¢ =pue(du;/d%,) on the cross sectioxy = 0.045.

where sgik) is the sign ok. It is also easy to obtain that o and x2,o do not depend on
yo. We defineg(yx ) by

(x) = (x1,0, X2,0)-

The pressurer is defined up to a constant. From (42), it is possible to find the derivative

Iy
Q
s L
16 1
type 1 type 2
N el I R Ry
0.125 006125 045 0.1 045

FIG. 14. A rough backward facing step.
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__DIRECT COMPUTATION
. WALL LAW ORDER 0

1" WALL LAW ORDER 1
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0.0035]. WALL LAW ORDER 2
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FIG. 15. u; (up) andC¢ = ue(du;/x,) (bottom) on the cross sectiop =0.55 above the wall, behind the
step.



216 ACHDOU, PIRONNEAU, AND VALENTIN

FIG. 16. Direct computation: streamlines behind the step.
of the Fourier coefficients ab = H:

0 .
~—x1k(H) = k(=2x1k(H) — i sgnk) x2.k(H))

ad
; Y2 (43)
8—y2)<2,k(H) — mk(H) = k(=2x2k(H) — i sgnk) x1,k(H)).
Therefore, orzy we have the transparent boundary condition,
ad
——x+nmwe=Tyx, onZxXy, (44)

)

whereT is the integro-differential operator defined by

72 K@xak(H) 4+ 5gnk) xak(H)) €%
Ty = _ . (45)
o2 JK@x2k(H) — i sgnk) x1k(H)) €

It can be proved that the boundary value problem is equivalent to findisgd such
that

—Ayx +Vyr =0, inYx,
Vy-x =0, inYu,
X = —Yo€1, 0NdY3UdYy, (46)

0
- =Ty, onxy,
8y2X + e X H

and then extengl andsn to the whole cell by Eqgs. (42). For the weak formulation of (46),
we introduce the spaddger(Yg). Let us prove existence and uniqueness for the variation
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formulation of (46). We are going to look for in the spacé,
H={x e (HL(Yw)’ Vy-x =0in Yy},
and we denote b¥{, the space
Ho=1{x € H,x =00nadYsUadYy)}.

The weak formulation of (46) consists of finding="x + y.e; satisfying x € Hp and

Vi € Ho, /vxvm(mm: e 7. (47)
Yy XH

wherer is the complex conjugate @f The sesquilinear form

&.n s VE - Vi +(T&, n)

is continuous and hermitian positive definite and, thus, coerci¥&irTherefore, problem
(46) has a unique solution, and the imaginary parts of the solution are clearly 0.
Let us now prove thaty) is a horizontal vector; indeed,

/Vyo)(:O
Ys

= X2+/ x‘n+/ x-n=0
Y2=3 Y3 Yy

= X2 — Y2€1-N— yo€-n=0
Yo=6 aY3 Ya

= Xz—/Vy'(y291)=0
Y2=4 Ys

= x2 = 0.
Yo=6

Letting § go to infinity, we obtain the desired result.

6.2. Proof of Theorem 3.2

Let H be greater thaitlnax. From the proof of Theorem 3.1, we obtain that

27(x% + H) =/ Vi +y2er)  V(xt+ o) + (Txh x5 =0,
Y

from the positivity of T. The upper bound on x 1 is obtained by lettindd go to Hmax.
For the lower bound oa x 1, we first notice that the variational formulation fpt + y,e;
is the Euler equation for the minimization problem,

1/ _ _
g'e”vﬁoz(/YH vs-vs+<Ts,s>) —Re(/EHel-s),
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and thaty® can be found by

— 1 — —
_N(X1+H)=slen7£o§(/y Vé'VéJr(T&,S))—Re(/Z 81'§>~

Let Yy be the rectangular domaiy = (0, 27) x (0, H) and let¥{, be the spacéio=

&

€ leer(YNH); dive =0; £(y4, 0) =0}. Clearly,Ho can be viewed as a subspacé':(v‘(by

extending the functions by 0). Therefore,

—n(x*+H) > inf 3(/ vs~vs_+<Ts,§>>—Re</ el-s).
gcHo 2 Y Xy

This infimum is clearly obtained by the functigne;, and is equal to-7H. The lower
bound on— ! follows.
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